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Abstract

A nonparametric test labelled ‘Rao Spacing-frequencies test’ is explored and
developed for testing whether two circular samples come from the same pop-
ulation. Its exact distribution and performance relative to comparable tests
such as the Wheeler-Watson test and the Dixon test in small samples, are
discussed. Although this test statistic is shown to be asymptotically nor-
mal, as one would expect, this large sample distribution does not provide
satisfactory approximations for small to moderate samples. Exact critical
values for small samples are obtained and tables provided here, using com-
binatorial techniques, and asymptotic critical regions are assessed against
these. For moderate sample sizes in-between i.e. when the samples are too
large making combinatorial techniques computationally prohibitive but yet
asymptotic regions do not provide a good approximation, we provide a sim-
ple Monte Carlo procedure that gives very accurate critical values. As is
well-known, the large number of usual rank-based tests are not applicable
in the context of circular data since the values of such ranks depend on the
arbitrary choice of origin and the sense of rotation used (clockwise or anti-
clockwise). Tests that are invariant under the group of rotations, depend on
the data through the so-called ‘spacing frequencies’, the frequencies of one
sample that fall in between the spacings (or gaps) made by the other. The
Wheeler-Watson, Dixon, and the proposed Rao tests are of this form and are
explicitly useful for circular data, but they also have the added advantage
of being valid and useful for comparing any two samples on the real line.
Our study and simulations establish the ‘Rao spacing-frequencies test’ as a
desirable, and indeed preferable test in a wide variety of contexts for com-
paring two circular samples, and as a viable competitor even for data on the
real line. Computational help for implementing any of these tests, is made
available online “TwoCircles” R package and is part of this paper.
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1 Introduction

The primary goal of this paper is to explore and develop a test for com-
paring two circular samples, study its small sample distribution, and make
it available to practitioners through tables of critical values, and an R code.
Its small sample performance is assessed relative to comparable tests that
are used in this context, and it is shown to be valid and superior in a broader
context. When such samples are on the real line, there is a great deal of lit-
erature on tests based on the ranks of one of these samples in the combined
sample, such as the Wilcoxon test (see e.g. the classical text by Hájek et
al., 1999 or more recent texts such as Wasserman, 2006 or Gibbons and
Chakraborti, 2011. However on a circle, ranks are not uniquely defined as
their values depend on the choice of origin and the sense of rotation (i.e.
clockwise/anticlockwise), which are both arbitrary. Discussions on circular
data can be found, for example, in Rao and SenGupta (2001) & Mardia
and Jupp (2009). An important alternative to rank tests is to consider tests
based on the spacing frequencies which are the counts or the frequencies
of one sample that fall in between the spacings or gaps made by the other
sample. These frequencies remain unchanged under different choices of zero
direction and the sense of rotation, and indeed, as the maximal invariant
under the rotation group, they play a central role for testing problems that
arise in connection with circular data (see e.g. Gatto and Rao, 2015).

The objective of this paper is to provide the exact distribution theory
for a few important ones among these tests, namely the Wheeler-Watson
test, the Dixon test and the newly introduced Rao test, provide their ex-
act distribution theory and critical values, and evaluate their relative power
performance in small samples. As two-sample tests for circular data come up
widely in many physical and natural sciences (see e.g. Taylor and Burns, 2016),
our results providing accurate critical values for such tests based on spacing-
frequencies, have important practical implications when dealing with small
and moderate sample sizes.

Although the main purpose of this new test lies in its use for comparing
two circular samples, it is equally useful for comparing any two samples on
the real line. Just to demonstrate this and to see how well it performs in
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that context, in Section 7 we make a power comparison with just one such
test that is commonly used on the line, viz. the Wilcoxon test.

2 Spacing-Frequencies Tests for Comparing two Circular
Populations

A special note about the notations: while m observations on a circle
make up an equal number of spacings, on the real line (m− 1) observations
break up the real line into m spacings. So in order to accommodate this
quirk, we start with (m − 1) observations for one of the samples as if they
are on the line, and all the theory works equally well when there are m
observations on the circle, which is our sample space of interest.

Let {Xi, i = 1, . . . ,m − 1} and {Yj , j = 1, . . . , n} be independent
samples from two continuous distributions F and G respectively, on the
real line. We want to test the classical null hypothesis H0 : F = G against
suitable alternatives. On the real line, let X(i), i = 1, . . . ,m−1 be the order
statistics of the Xi’s, with the notation X(0) ≡ −∞ and X(m) ≡ ∞. For
k = 1, . . . ,m, let Sk denote the number of Yj ’s in the interval [X(k−1), X(k)),
i.e.

On the circle, one may start with any one of the observations as the “ori-
gin” and consider either sense of rotation (clockwise or anticlockwise) and
define the frequency of Yj ’s in the arc-lengths formed by the sample X(i)’s,
i = 1, . . . ,m. These Sk’s are referred to as spacing frequencies, and their
distribution theory remains the same.

Unlike the ranks which are not well-defined for circular data, such spacing
frequencies have the rotational invariance property and play a prominent
role in comparing two samples on the circle. They are equally useful on
the line as they represent rank-differences (see Gatto and Rao, 2015 for
details). Large sample theory for families of nonparametric tests of the form∑m

k=1 h(Sk) which are symmetric in these spacing-frequencies as well as for
the more general statistics of the form

∑
k hk(Sk) are studied in Holst and

Rao (1980). But as shown in Gatto and Rao (2015), symmetric statistics
based on spacing-frequencies have the rotational invariance property and
hence are appropriate in the circular context.

In this paper, we consider three such nonparametric tests based on spac-
ing frequencies for comparing any two circular samples, and these are listed
in Table 1 below.
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Table 1: Test statistics based on Sk’s
Name Formula

Rao spacing-frequencies
statistic

T1 =
∑m

k=1

∣
∣Sk − n

m

∣
∣

Dixon statistic T2 =
∑m

k=1(Sk − n
m)2

Wheeler-Watson statistic T3 =
{∑m

k=1 cos
(

2π
n+m

[
k +

∑k−1
j=1 Sj

])}2
+

{∑m
k=1 sin

(
2π

n+m

[
k +

∑k−1
j=1 Sj

])}2

Note that, under the null hypothesis, the expected value of Sk is given
by n/m. While the Dixon statistic (1940) looks at the squared L2 norm of
(Sk−E[Sk]) (which can be seen as also equivalent to

∑
S2
k), the Rao spacing-

frequencies statistic given above, looks at the L1 norm of (Sk − E[Sk]). As
we show below, it is equal to the simple sum 2

∑m
k=1max

(
Sk − n

m , 0
)
. This

is because

m∑

k=1

∣
∣
∣Sk −

n

m

∣
∣
∣ =

m∑

k=1

max
(
Sk −

n

m
, 0
)
+

m∑

j=1

max
( n

m
− Sj , 0

)

= 2
m∑

k=1

max
(
Sk −

n

m
, 0
)
,

since

0 =
m∑

k=1

(
Sk −

n

m

)
=

m∑

k=1

max
(
Sk −

n

m
, 0
)
−

m∑

j=1

max
( n

m
− Sj , 0

)
.

This statistic may be seen as the two-sample analog of the frequently used
“Rao’s spacings test” for testing uniformity or isotropy for a single sample of
circular data (see Rao, 1976). The exact distribution theory, critical values,
and the relative performance of this statistic T1 are being studied in some
detail here for the first time. The Wheeler-Watson test (see Wheeler and
Watson, 1964) is based on what are called uniform scores and can be written
in the above form in terms of spacing frequencies.

Remark A. One may construct tests of the same functional form based
on the “dual” spacing-frequencies, namely the number of X-observations that
fall in between the spacings made by the Y-observations, but as discussed in
some detail in Gatto and Rao (2015) there is a one-to-one correspondence be-
tween these two sets, and one may proceed either way to obtain comparable
conclusions. This duality may be seen as somewhat analogous to choosing
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the ranks of one of the two samples in the combined sample, in the theory of
rank tests. Rao and Murthy (1981) consider a statistic based on the squared
frequencies of both kinds and show that in large samples, this does not add
to further efficiency compared to squaring just one set of frequencies as does
the Dixon statistic mentioned below. Given this, the authors suggest taking
the smaller of the two samples as the X’s to make up the spacings, and the
larger sample as the Y’s for obtaining the frequencies in order to avoid many
empty cells with zero frequencies (in analogy with having more balls than
cells).

3 Asymptotic Distributions

The asymptotic distributions of the Rao statistic, as well as the Dixon
statistic, can be obtained using the general results of Holst and Rao (1980),
in particular their Theorem 4.1, stated below.

Theorem 1 (Holst and Rao, 1980). Let T be a symmetric statistic of
the form

∑m
k=1 h(Sk). Let η be a geometric(ρ) random variable where

ρ = lim
m,n→∞

m

m+ n
∈ (0, 1) .

Let

μ = E [h(η)] and σ2 = V [h(η)]− Cov2 [h(η), η]

V [η]
. (3.1)

Then, under the null hypothesis H0 that the two populations are identical,
the asymptotic distribution of T is given by

1√
mσ

m∑

k=1

(T −mμ)
L−→ N (0, 1). (3.2)

We conclude this section with the special case when the sample sizes
from the two populations are equal, just in order to explore the divergence
between this large sample result and the exact values, which we do in Fig. 1
later. In this case, Eq. 3.2 has a very simple expression for both these tests,
as shown in the following corollary.

Corollary 1. When the sample sizes from the two populations are
equal, the limiting null distribution of the Rao statistic is given by

T1 −m
√
m/2

L−→ N (0, 1).
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while the asymptotic distribution of the Dixon statistic is given by

T2 − 3m

4
√
m

L−→ N (0, 1).

Proof. From Eq. 3.1, when the sample sizes are equal, η denotes a
random variable with a Geometric (1/2) distribution, and therefore we have
E[η] = 1, E[η2] = 3, V [η] = 2, E[η3] = 13 and E[η4] = 75.

Thus for the Rao statistic with h(x) = |x − 1|, we can check that
E [|η − 1|] = 1. Moreover, we have V [h(η)] = E

[
(η − 1)2

]
− E

2[|η − 1|] = 1
and Cov(h(η), η) = E[η|η − 1|]− 1 = 1.

Similarly for the Dixon statistic with h(x) = x2, therefore we have
V [h(η)] = V [η2] = E[η4] − E

2[η2] = 66, and Cov(h(η), η) = Cov(η2, η) =
E[η3]− E[η2]E[η] = 10, from which the result follows.

4 Exact Distributions

Mirakhmedov et al. (2014) provide improvements to the limiting normal
approximation given in Theorem 1 through Edgeworth expansions. Gatto
and Rao (1999) discuss the use of saddle-point approximations which lead
to accurate numerical approximations that compare well with Monte Carlo
simulations. However these are still attempts to get closer to the exact
distributions, which is the primary focus of this paper.

The exact distributions of these test statistics can be found by consid-
ering the joint distribution of S = (S1, S2, . . . , Sm). Since under the null
hypothesis the Xi’s and Yi’s come from the same distribution, all possible
permutations of the Xi’s and Yi’s are equally likely. Hence the distribution
of S is found by looking at the number of ways Yi’s can be distributed among
the spaces between the order statistics of X. Since there are m spaces gener-
ated by the X(k)’s and n objects are to be inserted into these m cells, which

is the classical combinatorial problem, and can be done in
(
n+m−1
m−1

)
equally

likely ways. Hence each possible configuration of S = (S1, S2, . . . , Sm) has

probability
(
n+m−1
m−1

)−1
. In order to derive the probability for any specific

value of a given statistic, we need to add the probabilities of all combina-
tions of S that correspond to this value. This involves increasingly complex
combinatorial computations, for which we provide an R package.

4.1. Computation of the Exact Critical Regions We now consider the
small sample case and provide the exact critical values for these test statis-
tics, corresponding to commonly used significance levels of α = 0.10 and
α = 0.05. Since these test statistics are all discrete, for any given signifi-
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cance level α, we sandwich such an α between upper tail probabilities p1 and
p2 with the corresponding critical values c1 and c2 as follows. For each value
of α, we give a pair of bracketing points (c1, c2) and corresponding upper
tail probabilities (p1, p2), where c1 < c2 and p1 > p2. Using ci, i = 1, 2 as the
critical value and [ci,∞) as the critical region so that any observed value of
T larger than or equal to ci leads to H0 being rejected, we have a test of
significance level pi, i = 1, 2. The points (c1, c2) are chosen to be successive
values of T so that P (T ∈ (c1, c2)|H0) = 0 and p1 = P (T ≥ c1|H0) ≤ α,
p2 = P (T ≥ c2|H0) > α. The upper 10% and 5% critical values for the
Rao, Dixon, and the Wheeler-Watson tests are given in Tables 3 to 5 in the
Appendix, for small samples (values of m ≤ 12, n ≤ 11). For other choices
of m and n, such critical values can be computed using the “TwoCircles”
R package1 that we make available.

4.2. Exact Versus Asymptotic Distributions Such exact null distribu-
tions can now be compared to the asymptotic results given by Corollary 1.
Figure 1 presents such a comparison for the Rao and Dixon statistics, taking
for illustration m = 9 and n = 10,which are nearly equal size samples. This
illustrates, as expected, that for small sample sizes the asymptotic distribu-
tion provides a very poor approximation to the exact one, especially for the
Dixon statistic.

We further illustrate the deficiency of using the asymptotic critical values
instead of using the exact values obtained by the combinatorial methods.
We do this by comparing the finite sample type I errors for the Dixon and
Rao statistics obtained from the exact and the asymptotic rejection regions.
These results are obtained by taking equal sample sizes (i.e. n = m − 1)
with n = 2, 3, . . . , 12 and at level α = 0.1. The results are presented on
the left panel of Fig. 2. As expected, the exact rejection regions lead to
type I errors which are systematically closer to α than the ones obtained
using asymptotic results. In the right panel of Fig. 2 we investigate by
Monte Carlo simulations (under H0: Xi ∼ N (0, 1) and Yi ∼ N (0, 1), i =
1, . . . , n) the relationship between the sample size n and the empirical type I
error obtained from asymptotic rejection regions. The results suggest that a
sample size of a several thousands are needed to obtain a correct type I error.
Overall conclusion is that the asymptotic distribution differs considerably
from the exact distribution even for moderately large sample sizes. This calls
for better approximations for dealing with moderate sample sizes, which is
what we explore next.

1available on GitHub: https://github.com/SMAC-Group/TwoCircles
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Figure 1: Exact and asymptotic distributions for the Rao and Dixon statis-
tics for the case of m = 9 and n = 10

ba

Figure 2: a Type I errors for the Dixon and Rao statistics obtained from
the exact and asymptotic rejection regions. b The relationship between the
sample size n and the type I error obtained from asymptotic rejection regions.
The error bars correspond to the standard errors obtained by resampling
techniques
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5 Critical Values for Moderate Sample Sizes via Simulation

For moderately large values of m and n, the calculation of the exact
sampling distribution through exhaustive enumeration of all possible combi-
nations may be too computationally intensive and, consequently, infeasible.
However, these values may at the same time be too small for the asymptotic
distribution to deliver a reliable approximation of the sampling distribution.
Such cases may typically arise when min(n,m) > 20 and max(n,m) < 1000.
To address this issue, we consider a simple and computationally efficient
Monte Carlo approach to compute fairly accurate critical regions and p-
values. This approach tends to reproduce the idea behind random permu-
tations in general non-parametric context, while taking advantage of the
known properties of the spacing-frequencies Sk under the null hypothesis.

This approach can be summarized in the following algorithm which is
based on B Monte Carlo replications:

1. Let b = 1.

2. Draw the following two samples {X∗
i , i = 1, . . . ,m−1} and {Y ∗

j , j =
1, . . . , n} where X∗

i ∼ U(0, 1) and Y ∗
j ∼ U(0, 1).

3. Compute the spacing-frequencies based on two samples obtained from
the previous step, i.e.

4. Compute the test statistic of interest based on the S∗
k ’s previously

obtained and define T ∗
b as follows:

T ∗
b =

m∑

k=1

h(S∗
k).

5. If b < B go to step 2 and define b = b+1, otherwise end the procedure.

As a result of this procedure, the empirical distribution T ∗
1 , ..., T

∗
B can

be used to estimate the bracketing points (c∗1, c
∗
2) together with the pair of

significance levels (p∗1, p
∗
2). Naturally, this approach can also be employed to
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calculate empirical p-values, which are simply defined as (see e.g. Davison
and Hinkley, 1997)

Moreover, the precision of the above approximations can be assessed using
different techniques such as e.g. applying the standard non-parametric boot-
strap on the Tb’s, allowing to select a value of B that leads to the desired
level of precision. The algorithm described in this section is implemented in
the “TwoCircles” R package2 that we make available.

6 Relative Performance of the Three Tests—Simulated Powers

Holst and Rao (1980) provide a comprehensive treatment on the asymp-
totic distribution theory and asymptotic efficiencies for tests based on spacing-
frequencies. However, to calculate the exact distributions of these test statis-
tics under alternatives, one needs the probability distribution of the vector S
under the alternatives, which is quite complex and is given by the following

Remark B. When f is the density of X, G the density of Y

P [S1 = n1, . . . Sm = nm] =
(m− 1)!n!

n1!n2! . . . nm!

∫

x1<x2<...<xm−1

Gn1(x1)×
(

m−1∏

i=2

[G(xi)−G(xi−1)]
ni

)

[1−G(xm−1)]
nm

(
m−1∏

i=1

f(xi)

)

dx,

with n1 + n2 + · · ·nm = n.

In view of this complexity, in this section, we investigate the finite sample
performance of the Rao test, compared with the Dixon and the Wheeler-
Watson tests via simulations, focusing on circular alternatives since these are
primarily meant for circular situations. Different scenarios are considered,
each corresponding to a different type of departure from the null hypothesis
H0. Simulation 1 considers the case when the two samples come from two
von Mises distributions with the same concentration, but as the difference
in their mean directions increases.

Simulation 1. We consider the following setting:

Xi ∼ vM(0, 2), i = 1, . . . ,m

Yj ∼ vM(μ, 2), j = 1, . . . , n.

2available on GitHub: https://github.com/SMAC-Group/TwoCircles
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An equally spaced grid of 20 values for μ was employed ranging from 0 to
π. Two combinations of sample sizes were used for m and n. The empirical
power curves (based on 104 Monte Carlo replications) of the different tests
considered in Table 1 are presented in Fig. 3. It can be observed that the
Wheeler-Watson test appears superior in this simulation to both the Rao
and Dixon tests.

In the next simulation we consider again the case when the two samples
come from two von Mises distributions with the same mean (at 0), but as
the difference in their concentration increases.

Simulation 2. In this simulation we consider the following setting:

Xi ∼ vM(0, 0), i = 1, . . . ,m

Yj ∼ vM(0, δ), j = 1, . . . , n.

An equally spaced grid of 20 values for δ was employed ranging from 0 to
20. Two combinations of sample sizes were used for m and n. The empirical
power curves (based on 104 Monte Carlo replications) are presented in Fig. 4.
In this simulation, the Rao test appears to provide a better power than
Wheeler-Watson and Dixon tests.

Next, we examine the performance of these tests when one of the samples
is from a Uniform distribution on [0, 2π) (which is the same as a vM with

ba

Figure 3: a Power curve for 20 equally spaced values of μ between 0 to π (see
Simulation 1) for the Rao, Dixon, and Wheeler-Watson tests with m = 4
and n = 12. b Similar to Case (a) but for the values m = 8 and n = 8.
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ba

Figure 4: a Power curve for an equally spaced grid of 20 values for δ (see
Simulation 2) ranging from 0 to 100 for the Rao, Dixon and Wheeler-Watson
tests. The values m = 6 and n = 12 were considered in this case. b Similar
to point (a) but for the values m = 6 and n = 16

zero concentration) while the other is from a mixture of two von Mises
distributions.

Simulation 3. We consider the following setting:

Xi ∼ vM(0, 0), i = 1, . . . ,m

Yj =
1

2
Y

(1)
j +

1

2
Y

(2)
j , j = 1, . . . , n

Y
(1)
j ∼ vM(π, δ), Y

(2)
j ∼ vM(0, δ).

An equally spaced grid of 20 values for δ was employed ranging from 0 to 20.
Two combinations of values were used for m and n such that the sum of the
sample sizes was kept to 28. The empirical power curves (based on 104 Monte
Carlo replications) are presented in Fig. 5. Under this scenario, the Rao test
clearly outperforms both the Wheeler-Watson and Dixon tests. One can
observe that Wheeler-Watson test provides particularly poor performance
in detecting departures from H0. This phenomenon is very similar to the
one-sample situation where for testing uniformity, the Rayleigh test (which
is based on the resultant length) fares poorly compared to the Rao’s Spacings
test, when the samples come from a symmetric multimodal distribution, like
axial data. See again Gatto and Rao (2015) for more details on this issue.

A Two-sample Nonparametric Test... S151



ba

Figure 5: a Power curve based for an equally spaced grid of 20 values for
δ (see Simulation 3) ranging from 0 to 20 for the Rao, Dixon and Wheeler-
Watson tests. The values m = 6 and n = 22 were considered in this case. b
Similar to point (a) but for the values m = 8 and n = 20

In the following simulation, we consider a different case of von Mises
mixtures

Simulation 4. We consider the following setting:

Xi ∼ vM(0, 0), i = 1, . . . ,m

Yj =
1

3
Y

(1)
j +

1

3
Y

(2)
j +

1

3
Y

(3)
j , j = 1, . . . , n

Y
(1)
j ∼ vM(0, δ), Y

(2)
j ∼ vM

(
2

3
π, δ

)

, Y
(3)
j ∼ vM

(
4

3
π, δ

)

.

An equally spaced grid of 20 values for δ was employed ranging from 0 to
20. Two combinations of values were used for m and n such that the sum of
the sample sizes was kept to 28. The empirical power curves (based on 104

Monte Carlo replications) are presented in Fig. 6. Similar to the previous
simulation, the Rao test clearly outperforms both the Wheeler-Watson and
Dixon tests.

The examples presented here are but a sample of exhaustive small sample
power study of these test statistics that we have undertaken. Based on these
as well as the cases presented here, we can draw several useful conclusions.
Among these 3 tests, the Wheeler-Watson test appears to perform better
than the other two in detecting location shifts as indicated in Simulation 1.

S. R. Jammalamadaka et al.S152



ba

Figure 6: a Power curve based for an equally spaced grid of 20 values for
δ (see Simulation 4) ranging from 0 to 20 for the Rao, Dixon and Wheeler-
Watson tests. The values m = 10 and n = 18 were considered in this case.
b Similar to point (a) but for the values m = 8 and n = 20

The Rao test appears preferable when one suspects that one of the samples
may be from a mixture-distribution i.e. when one sample is transformed to
be uniform on the circle, the other sample comes close to any symmetric
bimodal or multimodal alternative such as a mixture of 2 von Mises distri-
butions, as is the case in Simulations 3 and 4. This conclusion coincides with
similar results obtained by Gatto and Rao (2015). The Dixon and Rao tests
which are omnibus tests, perform well even in such situations. Although
it is shown in Theorem 4.2 of Holst and Rao (1980) that the Dixon statis-
tic is asymptotically Locally Most Powerful among symmetric functions of
spacing-frequencies, we see that its performance in small samples is not as
good as that of Rao test in all our simulations. The inevitable conclusion
seems to be that one should use this Rao spacing-frequencies test if one sus-
pects multimodal alternatives, or if the sample sizes are small to moderate
- the case for which this paper provides tables and necessary R code.

7 A Comparison with a Test on the Real Line

As stated earlier, let X(i)’s, i = 1, . . . ,m − 1 denote the order statistics
of Xi on the line with the notation X(0) ≡ −∞ and X(m) ≡ ∞, and Sk, k =
1, . . . ,m denote the number of Yj ’s in the interval [X(k−1), X(k)).
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In order to make a simple comparison with two-sample nonparametric
tests on the line, we consider one of the most commonly used tests namely
the Wilcoxon test (see Wilcoxon (1945)) as a proxy. As shown in the lemma
below, the Wilcoxon statistic is also a simple linear function of the spac-
ing frequencies and belongs to this general class of tests. However it is
not symmetric in these spacing-frequencies and hence takes different values
depending on the choice of the origin. Because of this lack of rotational
invariance, it cannot be used as such, for comparing two circular samples.

Lemma 1. The Wilcoxon rank sum test statistic W can be written as:

W = mn+
m(m− 1)

2
−

m∑

k=1

kSk,

in terms of {Sk : k = 1, . . . ,m}.
Proof. If Ri denotes the rank of X(i) in the combined sample, the

Wilcoxon statistic W =
∑m−1

i=1 Ri. Since Ri =
∑i

k=1(Sk + 1), we have

W =
m−1∑

i=1

Ri =
m−1∑

i=1

i∑

k=1

(Sk + 1) =
m−1∑

k=1

(Sk + 1)
m−1∑

i=k

1

=
m∑

k=1

(m− k)(Sk + 1) =
m∑

k=1

(m− k)Sk +
m(m− 1)

2
.

Since
∑m

k=1 Sk = n, we have
∑m

k=1(m − k)Sk = mn −
∑m

k=1 kSk and the
assertion follows.

Remark C. A centered version of W is sometimes used, namely the
Mann-Whitney statistic U = W − m(m−1)

2 , which can be written as

U =
m∑

k=1

(m− k)Sk = mn−
m∑

k=1

kSk.

To briefly assess how the three tests considered in this paper fare with
respect to competitors on the line, using the Wilcoxon test as a proxy, we
consider a simple simulation, viz. Simulation 5.

Simulation 5. We consider the following setting:

Xi ∼ N (0, 1), i = 1, . . . ,m− 1

Yj = pY
(1)
j + (1− p)

(
1

2
Y

(2)
j +

1

2
Y

(3)
j

)

, j = 1, . . . , n

Y
(1)
j ∼ N (0, 1), Y

(2)
j ∼ N (π, 1), Y

(3)
j ∼ N (−π, 1).

S. R. Jammalamadaka et al.S154



An equally spaced grid of 20 values for p was employed ranging from 0 to
1. Two combinations of values were used for m and n. The empirical power
curves (based on 104 Monte Carlo replications) of the tests considered in
Table 1 as well as the Wilcoxon rank test, is presented in Fig. 7. Similar
to the results presented in Section 6, Rao test clearly outperforms Wheeler-
Watson, Dixon and even the Wilcoxon rank test. It can also be observed
that the Wilcoxon rank test, and to a lesser extent the Wheeler-Watson test,
provide a particularly poor performance in detecting departure from H0.
This may be be partly explained by the fact that the distribution remains
symmetric under the alternative.

8 An Illustrative Example and Use of Tables

For small sample sizes (values of m ≤ 12, n ≤ 11), Appendix provides
tables of critical values for these three test statistics, by giving bracketing
values (closest critical value on either side) for α = 0.05, and α = 0.1. More
extensive tables as well p-values can be obtained using R code available in
the R package “TwoCircles”3. We illustrate the use of this code through
the following example:

> library(TwoCircles)

> get_critical_values(n = 6,m = 8, test = "rao", alpha = 0.05)

Bracketing values (c1, c2) corresponding to significance levels

(p1, p2) for Rao test based on the significance level 0.05

c1 = 9 (p1 = 0.0862)

c2 = 10.5 (p2 = 0.0047)

We now consider how these circular tests perform and their exact and asymp-
totic p-values, by applying them on a classic data set on homing pigeons.
Homing pigeons are selectively bred pigeons that possess the ability to find
their way home over extremely long distances, and are used in experiments
on animal navigation. There is considerable literature on this subject (see
e.g. Walcott, 1996 and the references therein). Among the early studies on
homing pigeons, Schmidt-Koenig (1958) evaluated the difference in orienta-
tion abilities of a group of control and experimental birds. The experimental
birds had their internal clock reset by six hours clockwise and were expected
to deviate by about 90◦ counterclockwise with respect to the control birds
upon release (see Schmidt-Koenig, 1958 for details). The release flight di-
rection of the pigeons from the two groups were collected in different exper-

3available on GitHub: https://github.com/SMAC-Group/TwoCircles.
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ba

Figure 7: a Power curve for an equally spaced grid of 20 values for p (see
Simulation 5) ranging from 0 to 1 for the tests considered in Table 1 as well
as the Wilcoxon rank test. The values m = 5 and n = 18 were considered in
this case. b Similar to point (a) but for the values m = 5 and n = 24

iments and one of them is presented in Fig. 8. It can be observed that mean
directions of the two groups appear to significantly differ. The experimental
and control birds have a mean direction of respectively 18.9◦ and 104.0◦,
which is close to 90◦ (counterclockwise) expected difference.

A hypothesis of interest here is whether the observed directions of the
two groups are from the same circular distribution. The three tests discussed
in Section 2 can be used to perform such analysis. Their asymptotic and
exact p-values are reported in Table 2. These results can be replicated using
our package as illustrated through the following example:

> library(TwoCircles)
> data("pigeons")
> circular_test(pigeons$control, pigeons$experimental, test = "rao")

Rao Two Sample Test

Data: pigeons$control and pigeons$experimental
Test Statistic: 15.77778
Exact P-value: 0.00185
Bracketing Points and Pair of Signif. Levels:
c1 = 13.3333 (p1 = 0.0767)
c2 = 13.5556 (p2 = 0.0479)
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Figure 8: Two sample from the experiment on the homing orientation of
pigeons. The reported angles in degrees are: 75◦, 75◦, 80◦, 80◦, 80◦, 95◦,
130◦, 170◦, 210◦ (control group); 10◦, 50◦, 55◦, 55◦, 65◦, 90◦, 285◦, 285◦,
325◦, 355◦ (experimental group). Adapted from Figure 22 of Schmidt-Koenig
(1958)

The differences between the asymptotic and exact p-values are noticeable,
in particular for the Dixon test where the asymptotic and exact p-values are
12.16% and 0.19%, respectively. In such case, one would actually be likely
not to reject the null hypothesis simply due to the poor approximation of
the asymptotic distribution for such a small sample size.

For the sample sizes of m = 9 and n = 10 as in this example, Fig. 1
can be used to read off the asymptotic and exact p-values for the Dixon and
Rao tests. The poor asymptotic approximation in the case of Dixon test is
particularly apparent from this figure, which confirms the large difference
reported in Table 2.

9 Concluding Remarks

A straightforward combinatorial approach is used to derive the exact dis-
tributions of several tests based on spacing frequencies. This class of tests
for comparing two circular samples includes the newly introduced Rao test,
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the Dixon test, and the Wheeler-Watson test. For all these statistics our
method provides the exact critical values and tables. Although the asymp-
totic theory of these statistics has been well-studied, such results often lead
to a poor approximation in small to moderate samples, as we demonstrate.
The comparative power performance of these various tests in small samples
has been studied through extensive simulations, some of which are presented
here. Based on these simulations, we find that omnibus tests like the Rao
test and the Dixon test are preferable to the Wheeler-Watson test if one
suspects symmetric multimodal alternatives. Again in small to moderate
samples, Rao spacing frequencies test often outperforms the Dixon test. An
illustrative comparison with the Wilcoxon test which is commonly used on
the real line for comparing two samples, is presented to demonstrate that
these tests may also be effectively used in two-sample comparisons on the
real line.
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Appendix A. Tables of Critical Values

Table 3: Bracketing values (c1, c2) corresponding to significance levels
(p1, p2)

α = 0.10 α = 0.05

n m c1 (p1) c2 (p2) c1 (p1) c2 (p2)

5 6 6.67 (0.14) 8.33 (0.02) 6.67 (0.14) 8.33 (0.02)
5 7 7.14 (0.20) 8.57 (0.02) 7.14 (0.20) 8.57 (0.02)
5 8 7.50 (0.15) 8.75 (0.01) 7.50 (0.15) 8.75 (0.01)
5 9 7.78 (0.12) 8.89 (0.01) 7.78 (0.12) 8.89 (0.01)
5 10 7.00 (0.45) 8.00 (0.09) 8.00 (0.09) 9.00 (0.00)
5 11 7.27 (0.41) 8.18 (0.08) 8.18 (0.08) 9.09 (0.00)
5 12 7.50 (0.37) 8.33 (0.06) 8.33 (0.06) 9.17 (0.00)

6 6 8.00 (0.18) 10.00 (0.01) 8.00 (0.18) 10.00 (0.01)
6 7 8.57 (0.12) 10.29 (0.01) 8.57 (0.12) 10.29 (0.01)
6 8 7.50 (0.41) 9.00 (0.09) 9.00 (0.09) 10.50 (0.00)
6 9 8.00 (0.34) 9.33 (0.06) 9.33 (0.06) 10.67 (0.00)
6 10 8.40 (0.29) 9.60 (0.05) 8.40 (0.29) 9.60 (0.05)
6 11 8.73 (0.24) 9.82 (0.04) 8.73 (0.24) 9.82 (0.04)
6 12 9.00 (0.21) 10.00 (0.03) 9.00 (0.21) 10.00 (0.03)

7 6 9.33 (0.12) 9.67 (0.05) 9.33 (0.12) 9.67 (0.05)
7 7 8.00 (0.38) 10.00 (0.08) 10.00 (0.08) 12.00 (0.00)
7 8 8.75 (0.30) 10.50 (0.05) 10.50 (0.05) 12.25 (0.00)
7 9 9.33 (0.23) 10.89 (0.03) 9.33 (0.23) 10.89 (0.03)
7 10 9.80 (0.18) 11.20 (0.02) 9.80 (0.18) 11.20 (0.02)
7 11 10.18 (0.14) 11.45 (0.02) 10.18 (0.14) 11.45 (0.02)
7 12 10.50 (0.12) 11.67 (0.01) 10.50 (0.12) 11.67 (0.01)

8 6 9.33 (0.13) 10.67 (0.09) 10.67 (0.09) 11.33 (0.03)
8 7 9.43 (0.23) 9.71 (0.09) 11.43 (0.05) 11.71 (0.02)
8 8 10.00 (0.21) 12.00 (0.03) 10.00 (0.21) 12.00 (0.03)
8 9 10.67 (0.16) 12.44 (0.02) 10.67 (0.16) 12.44 (0.02)
8 10 11.20 (0.12) 12.80 (0.01) 11.20 (0.12) 12.80 (0.01)
8 11 10.18 (0.35) 11.64 (0.09) 11.64 (0.09) 13.09 (0.01)
8 12 10.67 (0.30) 12.00 (0.07) 12.00 (0.07) 13.33 (0.01)
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Table 3: Continued

α = 0.10 α = 0.05

n m c1 (p1) c2 (p2) c1 (p1) c2 (p2)

9 6 10.00 (0.24) 11.00 (0.09) 12.00 (0.06) 13.00 (0.02)
9 7 10.86 (0.16) 11.43 (0.06) 11.43 (0.06) 12.86 (0.03)
9 8 11.50 (0.11) 11.75 (0.03) 11.50 (0.11) 11.75 (0.03)
9 9 12.00 (0.11) 14.00 (0.01) 12.00 (0.11) 14.00 (0.01)
9 10 10.80 (0.30) 12.60 (0.08) 12.60 (0.08) 14.40 (0.01)
9 11 11.45 (0.25) 13.09 (0.05) 13.09 (0.05) 14.73 (0.00)
9 12 12.00 (0.20) 13.50 (0.04) 12.00 (0.20) 13.50 (0.04)
10 6 11.33 (0.15) 12.67 (0.07) 12.67 (0.07) 13.33 (0.05)
10 7 12.29 (0.12) 13.14 (0.04) 12.29 (0.12) 13.14 (0.04)
10 8 12.50 (0.12) 13.00 (0.07) 13.00 (0.07) 13.50 (0.02)
10 9 11.56 (0.12) 11.78 (0.09) 13.33 (0.08) 13.56 (0.05)
10 10 12.00 (0.24) 14.00 (0.05) 14.00 (0.05) 16.00 (0.00)
10 11 12.73 (0.18) 14.55 (0.03) 12.73 (0.18) 14.55 (0.03)
10 12 13.33 (0.13) 15.00 (0.02) 13.33 (0.13) 15.00 (0.02)

11 6 12.67 (0.15) 14.33 (0.05) 12.67 (0.09) 14.33 (0.05)
11 7 12.57 (0.16) 12.86 (0.10) 13.71 (0.09) 14.86 (0.03)
11 8 12.50 (0.18) 13.25 (0.10) 14.50 (0.05) 15.25 (0.01)
11 9 13.11 (0.12) 13.56 (0.06) 14.67 (0.05) 15.11 (0.03)
11 10 13.40 (0.16) 13.60 (0.08) 13.60 (0.08) 13.80 (0.04)
11 11 14.00 (0.13) 16.00 (0.02) 14.00 (0.13) 16.00 (0.02)
11 12 12.83 (0.28) 14.67 (0.10) 14.67 (0.10) 16.50 (0.01)

Rao Test (m = number of spacings; n = total of frequencies)
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Table 4: Bracketing values (c1, c2) corresponding to significance levels
(p1, p2)

α = 0.10 α = 0.05

n m c1 (p1) c2 (p2) c1 (p1) c2 (p2)

5 6 17.00 (0.14) 25.00 (0.02) 17.00 (0.14) 25.00 (0.02)
5 7 17.00 (0.11) 25.00 (0.02) 17.00 (0.11) 25.00 (0.02)
5 8 13.00 (0.15) 17.00 (0.08) 17.00 (0.08) 25.00 (0.01)
5 9 13.00 (0.12) 17.00 (0.06) 17.00 (0.06) 25.00 (0.01)
5 10 11.00 (0.27) 13.00 (0.09) 13.00 (0.09) 17.00 (0.05)
5 11 11.00 (0.24) 13.00 (0.08) 13.00 (0.08) 17.00 (0.04)
5 12 11.00 (0.21) 13.00 (0.06) 13.00 (0.06) 17.00 (0.03)

6 6 20.00 (0.14) 26.00 (0.08) 26.00 (0.08) 36.00 (0.01)
6 7 18.00 (0.23) 20.00 (0.10) 26.00 (0.05) 36.00 (0.01)
6 8 18.00 (0.18) 20.00 (0.07) 20.00 (0.07) 26.00 (0.04)
6 9 18.00 (0.15) 20.00 (0.05) 20.00 (0.05) 26.00 (0.03)
6 10 18.00 (0.12) 20.00 (0.04) 18.00 (0.12) 20.00 (0.04)
6 11 14.00 (0.22) 18.00 (0.10) 18.00 (0.10) 20.00 (0.03)
6 12 14.00 (0.19) 18.00 (0.08) 18.00 (0.08) 20.00 (0.02)

7 6 27.00 (0.16) 29.00 (0.08) 29.00 (0.08) 37.00 (0.05)
7 7 27.00 (0.11) 29.00 (0.05) 29.00 (0.05) 37.00 (0.03)
7 8 25.00 (0.10) 27.00 (0.08) 27.00 (0.08) 29.00 (0.03)
7 9 21.00 (0.15) 25.00 (0.07) 27.00 (0.06) 29.00 (0.02)
7 10 21.00 (0.12) 25.00 (0.06) 25.00 (0.06) 27.00 (0.05)
7 11 19.00 (0.19) 21.00 (0.09) 21.00 (0.09) 25.00 (0.04)
7 12 19.00 (0.16) 21.00 (0.08) 21.00 (0.08) 25.00 (0.03)

8 6 34.00 (0.12) 38.00 (0.10) 40.00 (0.05) 50.00 (0.03)
8 7 30.00 (0.16) 32.00 (0.09) 38.00 (0.07) 40.00 (0.03)
8 8 30.00 (0.11) 32.00 (0.06) 34.00 (0.05) 38.00 (0.04)
8 9 28.00 (0.12) 30.00 (0.08) 30.00 (0.08) 32.00 (0.04)
8 10 26.00 (0.12) 28.00 (0.09) 30.00 (0.06) 32.00 (0.03)
8 11 24.00 (0.11) 26.00 (0.10) 28.00 (0.07) 30.00 (0.04)
8 12 22.00 (0.17) 24.00 (0.08) 28.00 (0.06) 30.00 (0.03)

9 6 41.00 (0.15) 45.00 (0.08) 51.00 (0.06) 53.00 (0.03)
9 7 39.00 (0.13) 41.00 (0.10) 41.00 (0.10) 45.00 (0.05)
9 8 35.00 (0.12) 39.00 (0.09) 41.00 (0.06) 45.00 (0.03)
9 9 33.00 (0.11) 35.00 (0.08) 39.00 (0.06) 41.00 (0.04)
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Table 4: Continued

α = 0.10 α = 0.05

n m c1 (p1) c2 (p2) c1 (p1) c2 (p2)

9 10 31.00 (0.13) 33.00 (0.08) 35.00 (0.06) 39.00 (0.05)
9 11 29.00 (0.14) 31.00 (0.10) 33.00 (0.06) 35.00 (0.05)
9 12 29.00 (0.11) 31.00 (0.08) 31.00 (0.08) 33.00 (0.04)
10 6 52.00 (0.12) 54.00 (0.09) 58.00 (0.05) 66.00 (0.04)
10 7 46.00 (0.11) 50.00 (0.08) 54.00 (0.06) 58.00 (0.03)
10 8 42.00 (0.14) 44.00 (0.08) 52.00 (0.05) 54.00 (0.03)
10 9 40.00 (0.11) 42.00 (0.10) 44.00 (0.05) 46.00 (0.05)
10 10 36.00 (0.12) 38.00 (0.09) 42.00 (0.07) 44.00 (0.04)
10 11 34.00 (0.13) 36.00 (0.09) 42.00 (0.05) 44.00 (0.03)
10 12 32.00 (0.14) 34.00 (0.10) 40.00 (0.05) 42.00 (0.04)

11 6 59.00 (0.12) 61.00 (0.09) 69.00 (0.06) 73.00 (0.04)
11 7 55.00 (0.11) 57.00 (0.08) 65.00 (0.05) 67.00 (0.05)
11 8 51.00 (0.10) 53.00 (0.10) 55.00 (0.08) 57.00 (0.05)
11 9 45.00 (0.12) 47.00 (0.10) 55.00 (0.05) 57.00 (0.03)
11 10 43.00 (0.14) 45.00 (0.09) 49.00 (0.05) 51.00 (0.05)
11 11 43.00 (0.10) 45.00 (0.06) 45.00 (0.06) 47.00 (0.05)
11 12 39.00 (0.10) 41.00 (0.09) 43.00 (0.08) 45.00 (0.05)

Dixon Test (m = number of spacings; n = total of frequencies)
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Table 5: Bracketing values (c1, c2) corresponding to significance levels
(p1, p2)

α = 0.10 α = 0.05

n m c1 (p1) c2 (p2) c1 (p1) c2 (p2)

5 6 5.99 (0.12) 6.60 (0.10) 8.74 (0.06) 12.34 (0.02)
5 7 5.73 (0.12) 7.46 (0.10) 8.46 (0.05) 10.46 (0.05)
5 8 7.33 (0.10) 7.39 (0.10) 10.15 (0.05) 12.00 (0.03)
5 9 7.85 (0.10) 8.85 (0.08) 10.30 (0.05) 10.54 (0.04)
5 10 7.91 (0.10) 8.40 (0.09) 10.25 (0.05) 10.36 (0.05)
5 11 8.11 (0.10) 9.03 (0.09) 10.44 (0.05) 11.52 (0.04)
5 12 8.25 (0.10) 8.76 (0.10) 11.03 (0.05) 11.17 (0.05)

6 6 7.46 (0.11) 8.00 (0.10) 8.46 (0.06) 11.20 (0.04)
6 7 7.59 (0.11) 7.94 (0.10) 10.42 (0.05) 10.86 (0.04)
6 8 7.94 (0.10) 9.30 (0.09) 10.10 (0.05) 12.21 (0.04)
6 9 9.12 (0.10) 9.42 (0.09) 11.36 (0.05) 11.61 (0.04)
6 10 9.11 (0.10) 9.44 (0.09) 11.29 (0.05) 11.54 (0.04)
6 11 9.41 (0.10) 9.53 (0.10) 12.21 (0.05) 12.36 (0.05)
6 12 9.94 (0.10) 10.11 (0.09) 12.17 (0.05) 12.25 (0.05)

7 6 7.59 (0.12) 7.94 (0.10) 10.42 (0.05) 10.86 (0.04)
7 7 8.85 (0.10) 8.94 (0.09) 10.54 (0.05) 11.65 (0.05)
7 8 8.99 (0.10) 9.06 (0.10) 11.53 (0.05) 11.57 (0.05)
7 9 9.78 (0.10) 10.11 (0.09) 12.23 (0.05) 12.66 (0.05)
7 10 10.02 (0.10) 10.07 (0.10) 12.58 (0.05) 12.63 (0.05)
7 11 10.29 (0.10) 10.41 (0.09) 13.41 (0.05) 13.45 (0.05)
7 12 10.48 (0.10) 10.55 (0.10) 13.54 (0.05) 13.61 (0.05)

8 6 7.94 (0.10) 9.30 (0.09) 10.10 (0.05) 12.21 (0.04)
8 7 8.99 (0.10) 9.06 (0.10) 10.95 (0.05) 11.53 (0.05)
8 8 9.44 (0.10) 10.01 (0.10) 11.99 (0.05) 13.14 (0.05)
8 9 10.15 (0.10) 10.18 (0.10) 13.01 (0.05) 13.25 (0.05)
8 10 10.60 (0.10) 10.92 (0.10) 13.82 (0.05) 13.99 (0.05)
8 11 11.08 (0.10) 11.12 (0.10) 14.29 (0.05) 14.29 (0.05)
8 12 11.47 (0.10) 11.49 (0.10) 14.66 (0.05) 14.77 (0.05)

9 6 9.12 (0.10) 9.42 (0.09) 11.36 (0.05) 11.61 (0.04)
9 7 9.24 (0.10) 9.78 (0.10) 11.64 (0.05) 12.23 (0.05)
9 8 10.15 (0.10) 10.18 (0.10) 13.25 (0.05) 13.36 (0.05)
9 9 10.61 (0.10) 10.92 (0.10) 13.82 (0.05) 13.99 (0.05)
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Table 5: Continued

α = 0.10 α = 0.05

n m c1 (p1) c2 (p2) c1 (p1) c2 (p2)

9 10 11.37 (0.10) 11.40 (0.10) 14.58 (0.05) 14.61 (0.05)
9 11 11.93 (0.10) 11.97 (0.10) 15.45 (0.05) 15.47 (0.05)
9 12 12.34 (0.10) 12.35 (0.10) 15.80 (0.05) 15.85 (0.05)
10 6 9.11 (0.10) 9.44 (0.09) 11.29 (0.05) 11.54 (0.04)
10 7 10.07 (0.10) 10.11 (0.10) 12.58 (0.05) 12.63 (0.05)
10 8 10.60 (0.10) 10.92 (0.10) 13.82 (0.05) 13.99 (0.05)
10 9 11.37 (0.10) 11.40 (0.10) 14.58 (0.05) 14.61 (0.05)
10 10 12.07 (0.10) 12.19 (0.10) 15.28 (0.05) 15.39 (0.05)
10 11 12.58 (0.10) 12.59 (0.10) 16.06 (0.05) 16.08 (0.05)
10 12 13.05 (0.10) 13.07 (0.10) 16.73 (0.05) 16.76 (0.05)

11 6 9.41 (0.10) 9.53 (0.10) 12.21 (0.05) 12.36 (0.05)
11 7 10.29 (0.10) 10.41 (0.09) 13.41 (0.05) 13.45 (0.05)
11 8 11.08 (0.10) 11.12 (0.10) 14.28 (0.05) 14.29 (0.05)
11 9 11.93 (0.10) 11.97 (0.10) 15.45 (0.05) 15.47 (0.05)
11 10 12.58 (0.10) 12.59 (0.10) 16.06 (0.05) 16.08 (0.05)
11 11 13.19 (0.10) 13.23 (0.10) 16.93 (0.05) 16.96 (0.05)
11 12 13.72 (0.10) 13.72 (0.10) 17.54 (0.05) 17.56 (0.05)

Wheeler-Watson Test (m = number of spacings; n = total of frequencies)
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Stéphane Guerrier

Geneva School of Economics and

Management, Faculty of Science,

University of Geneva, Geneva,

Switzerland

E-mail: Stephane.Guerrier@unige.ch

Vasudevan Mangalam

School of Electrical Engineering,

Computing and Mathematical

Sciences, Curtin University, Perth,

Australia

Paper received: 6 July 2020; accepted 7 December 2020.

S. R. Jammalamadaka et al.S166


	A Two-sample Nonparametric Test for Circular Data– its Exact Distribution and Performance
	Introduction
	Spacing-Frequencies Tests for Comparing two Circular Populations
	Asymptotic Distributions
	Exact Distributions
	Computation of the Exact Critical Regions
	Exact Versus Asymptotic Distributions

	Critical Values for Moderate Sample Sizes via Simulation
	Relative Performance of the Three Tests—Simulated Powers
	A Comparison with a Test on the Real Line
	An Illustrative Example and Use of Tables
	Concluding Remarks
	Appendix  A. Tables of Critical Values
	Appendix  A Tables of Critical Values


